
Layout Builder Components can
Break Your Site.

Virtual DrupalCon
July 14, 2020

Here’s How.

Who Am I?

• André Angelantoni, Founder of Performant Labs

• Working with Drupal since 5.0

• Clients include France Telecom, CBS Interactive,
DocuSign, Goldman Environmental Prize, Robert Half
and Tesla

• Performant Labs is sponsoring Layout Builder Kit,
Campaign Kit, Payment Stripe and is the founder of the
Drupal Quality Initiative

• performantlabs.com/articles/drupalcon-2020-talk

• This is Part 1 of this important topic

• I’ll deliver Part 2 at a camp later this year, perhaps at
BADCamp but I don’t know yet

• Leave your email address at the link above to be notified

Where to Find This Talk

• Instant Introduction to Layout
Builder

• Why Do We Use Content Management
Systems?

• Component Anatomy

• The Fundamental Problem

• The Solution

• A Performance Warning

• Layout Builder Kit

• Layout Builder Rules to Live By

• The Emerging Layout Builder
Ecosystem

• Resources

• Q&A

What We’ll Cover

• When discussing Layout Builder:

• a component is the same thing as a block.

• in most instances, a page is the same thing as a node.

A Note on Nomenclature

• Layout Builder is a souped-up Panelizer! (If you’ve worked
with that module.)

• If you haven’t, Layout Builder is a way to control the
presentation of several parts of Drupal, including nodes,
blocks, taxonomy terms and menus.

• You can create rigid layouts that content editors can't
change or layouts almost completely editable by content
editors—or somewhere in between.

Instant Introduction to Layout Builder

What Kind of Site Do You Want?

Why do we use content
management systems?

To make managing the content on
our website easier for the teams

that work on them.

Ok.

How do content management
systems do that?

They have a laundry list of features from
managing media assets to spell checking.

But two features are particularly
important for many teams.

• Page versioning

• Each change to the page saves a new version.

• Content editors want to roll back changes quickly!

Important Feature #1

• Workflow

• Content editors want to collaborate and ensure high
quality. Changing the Workflow status from Draft to
Needs Review to Published helps with both items.

• Let's talk about versioning first.

Important Feature #2

But first, we need to discuss the two
different ways CMSs make pages.

The Static Approach

• Some CMSs create a full HTML page and write it
into a file, like Adobe Experience Manager.

• Each page is stamped with a date.

• To see "back in time," just pull up an older version
of the file because the content was all written into
it.

• To make that older page current, just rename the
old version of the file; something like
“FrontPage-2020-02-01.html” to “FrontPage.html”

FrontPage-2020-02-01.html

FrontPage.html

The Dynamic Approach

• The page is rendered on-the-fly, sometimes
for each user (when the user is logged in).

• This is the system Drupal uses.

• We do add several layers of caching,
which stores a version of the page, but those
page versions are not retained long-term and
cannot be used for versioning.

/front-page

So what’s the problem?

The problem is that we may break
these two features

(versioning and workflow)
depending on where the

component content is stored
AND the complexity of the component.

It’s not just that you can
 break the site.

This is one of those things in
which people may start saying,

“Drupal is broken.”
But it’s not Drupal—it’s actually

an implementation issue.

Component Anatomy

How Are Components Made?

• Components in Drupal are blocks and you could divide them into three parts.

Configuration Form
Front End

(Rendered HTML)

Content

How Are Components Made?

• Part 1:

• the rendered HTML (the button or carousel users see)

• rendered by TWIG templates or a front-end
framework like React

What Are Components? (cont’d)

• Part 2:

• the configuration form

This is a Layout Builder
component configuration form.

What Are Components? (cont’d)

• Part 3:

• the content to be displayed Content!

Where is component configuration stored?

• We are interested in more than the
presentation of the component, such
as whether it has a border around it.

• We are also interested in the
content of the component.

Where is the configuration
for this stored?

• It can be with the content
type definition, the block
definition, the taxonomy
definition or the menu
definition.

• When stored here, the
configuration applies to
all entities (i.e. all nodes
of that content type, etc.).

First Location:
With the Entity Definition

With just this checkbox,
configuration is stored in the
content type template.

Applies to all nodes of
this content type.

First Location (cont’d)

You will be told that you are
editing the layout template.

With both checkboxes,
configuration is stored in the
entity template
and on each entity.

Second Location:
With the Node, Block, Taxonomy or Menu

• It may also be stored with each
entity (node, block, taxonomy
term, menu). This allows
"template overrides" by entity
when it is turned on.

• You will notice Drupal adds an extra field to the entity (content type, block,
taxonomy term or menu).

This extra field appears when
template overrides are turned on.

Second Location (cont’d)

Second Location (cont’d)

Nodes node__layout_builder__layout

Blocks block_content__layout_builder__layout

Menus menu_link_content__layout_builder__layout

Taxonomy taxonomy_term__layout_builder__layout

• To store that extra field, Drupal adds an extra table to the database. If revisions are
turned on, it adds the revision table, too (not shown below).

How is the configuration stored?

O:29:”Drupal\layout_builder\Section":
4:
{s:11:”*layoutId”;
s:13:”layout_onecol";
s:17:”*layoutSettings";
a:0:{}
s:13:”*components";
a:0:{}
s:21:”*thirdPartySettings";
a:0:{}
}

• It’s stored as a serialized string.

Where is the Content Saved?

• When working with blocks, the content is stored in block tables that follow the same
structure as the other entities (nodes, menus, taxonomy terms):

Tables for a basic block
design. Adding fields
creates more tables.

What was the problem, again?

Which version is displayed?

• The problem arises with older versions of the page. Which version of the component
should be displayed?

• For Drupal to know, the revision of the block needs to be stored with the layout.

• As of Drupal 8.9/9.0, Global/Reusable Components do not store their Revision ID with
the layout.

• You could revert to an older page—but it would show the most current version
of the components, thereby breaking these key features!

Do you want to be the one telling
the client that page revisioning,

 workflow and workspaces
are all broken?

Warning: Watch out for Complexity!

• And what about parent-child relationships in components, like a field that points to
another object?

• These, too, are not stored in the layout and pulling up old pages may show the
most recent version of the child if you aren’t careful.

Where is the Content Saved? (cont’d)

• One way out when making custom components is storing the content with the layout as
part of the serialized string; content is automatically revisioned this way.

• Version 1 of Layout Builder Kit components use this mechanism.

• This is a perfectly valid way to get around this problem.

O:29:”Drupal\layout_builder\Section":
4:
{s:11:”*layoutId”;
s:13:”layout_onecol";
s:17:”*layoutSettings";  
s:45:{“The quick brown fox jumped over the lazy dog.”}
}

So, how should you proceed?

“Carefully”

• Be very aware of how your component content is stored especially if older revisions or
workflow or workspaces is needed immediately or in the future. Understand the details
of each component type and test everything thoroughly.

• Do not assume — test and keep detailed notes!

• Teach everyone on the team about this issue.

Leveraging the Framework

• If there are so many problems with storing content in tables, why not just store
everything in the serialized string and call it a day?

• There are other parts of Drupal that open up to you by using tables, like using the Diff
module to compare what changed between two versions of the page. Or getting your
content into the search index.

• And many more contributed modules will be made that work with content stored in
fields instead of serialized strings.

A Performance Warning

A Table per Field

• Recall that when component content is stored in fields instead of serialized and stored
with configuration, Drupal creates a table for every field.

• It does this in part to allow for fast database structure changes on production
databases.

• To collect all the content for a single component requires a SQL join statement between
multiple tables.

• If you have a page with many components, collecting all the content for all the
components will be really slow. (We tested this; it was unusably slow on pages with
many components.)

The Field API

• Consider a component that has three fields: the event title, date and location.

Entity ID Event Title
1 Title 1
2 Title 2
3 Title 3

Table: Event title

Entity ID Event Date
1 Date 1
2 Date 2
3 Date 3

Table: Event date

Entity ID Event Location
1 Location 1
2 Location 2
3 Location 3

Table: Event location

• Drupal fetches these in a single query with SQL JOINs and populates an internal object
with the result.

• More fields per component slower; more components on the page slower

The Workaround

• Make your components in custom modules and store all the content for the component
in a single table using the Entity API—not the Field API. (Go old school!)

Entity ID Event Title Event Date Event Location
1 Title 1 Date 1 Location 1
2 Title 2 Date 2 Location 2
3 Title 3 Date 3 Location 3

Table: Event title

• Drupal fetches with far fewer JOINs MUCH faster.

• Book Navigation

• Icon Text

• Image

• Render

• Rich Text

• Tab

• Video

Layout Builder Kit

• Layout Builder Kit 1.x currently uses serialized string storage. This appears to be the
same system Acquia Cohesion uses. (Acquia people: correct me if this is incorrect.)

• The components so far:

• For a full walk-through of Layout Builder Kit and how to contribute new components:
webcamp.stanford.edu/session/introducing-layout-builder-kit

What’s Next for LBK?

• Version 2.x of Layout Builder Kit will add components that use the Entity API.

• They could be based on classes that help developers construct slightly more complex
components without damaging the versioning mechanism.

• Site builders can then judge competing requirements and choose the storage
mechanism that makes sense for their build.

• Contact me if you want to help develop those base classes.

I fear there will be many “broken” Drupal
sites made by teams unaware of these issues.

Unfortunately, Drupal will be blamed when

it’s actually a site build issue.

Don’t let your site be one of these.

• Layout Builder Asset

• Layout Builder Asymmetric
Translation

• Layout Builder Browser

• Layout Library

• Layout Builder Modal

• Layout Builder Restrictions

• Block Blacklist

• Layout Builder Styles

• Dynamic Layouts

• Entity Browser Block

• Mini Layouts

• Layout Builder Everywhere

• Layout Builder Symmetric
Translations

• Layout Builder UX

The Emerging Layout Builder Ecosystem

• It’s not possible yet to export and import layouts but it should be ready soon:

Expose Layout Builder data to REST and JSON:API
drupal.org/project/drupal/issues/2942975

• Layout Builder Everywhere will extend Layout Builder to regions of the page other
than the main content area.

drupal.org/project/lb_everywhere

Some Interesting Notes

• A patch brings Layout Builder into Page Manager.

Create a layout builder variant
drupal.org/project/page_manager/issues/2960739

Some Interesting Notes

Patch Committed!

• Watch a video about the Layout Builder ecosystem here:
2019.badcamp.org/session/start-using-emerging-layout-builder-ecosystem

• See the list of Layout Builder ecosystem modules here:
drupal.org/docs/8/core/modules/layout-builder/additional-modules

Resources

• Additional systems to investigate:

• DXPR Builder: dxpr.com

• Acquia Cohesion: www.acquia.com/products-services/acquia-cohesion

• As far as I can tell, both store their configuration on the pages rather than in
tables

• Elementor (drupal.org/project/elementor)

• Gutenberg (drupal.org/project/gutenberg)

Resources

Q&A

